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SPECTRUM OF NATURAL OSCILLATIONS OF

TW3-DIMENSIONAL LAMINAR FLOWS*

~ D. Grohne ..-—.

1 ● INTRODUJTIOI?AND STATEMENT OF TKE PROEGEM

b the investigation of stability of a two-dimensional laminsr flow
with respect to small disturbances, we describe a disturbance of the
stresm function moving downstream (in the direction of the x-sxis) by the
“psrtial wave formula”

.

. and obtain then
at right angles
equation of the

.—

If = 9(y)eia(x-et) (1.1)

for the distribution of the disturbance smplitude q(y)
to the main flow the so-called stability differential
fourth order

((U-c)(w -C?ql)+m+qw )- 2a2cp”+ ci4q (1.2)

where U(y) designates the veloci~ profile of the basic lsqinar flow
h addition, we enforce certain
case of the psrallel chsmnel

boundary conditions, in the specific

=0 Q1(*l) =() (193)

i=

—

—.

--

—

*“fier das Spektrum bei Eigenschwingungen ebener Iaminarstr&mmgen.”
Zeitschrift fi sngewandte Mathematik und Mechanik, vol. 34, no. 8-9,
August-September 1954, pp. 344-357. —
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which express the fact that even the d~sbb%d flow a~–eres to the *
bounding Wdh. In these eqyations, the vel..cities U~.and c are
referred to a velocity of reference U~j furthermore, t=helengths x,
y, and l/a to half the channel width b, =%’~ikally the time t to-.. “
~he time hit b/Uo. The Remolds number-”R=’is defii~”by

.-.. ..,. --—

The boundary-value problem consist~ of different% equation and
boundary conditions determines, for each pafrmof parameters a and R, ‘:

—

a spectrum of an infinite number of eig~nvalues cn. The associated -
disturbances (1.1) are damped when Im(cn) <-0, and are excited when.—.
Im(cn) > O; u is assumed to be Qbsiti’e @d~real. A bqsic flow is”

1“

called stable for a value of R when “t”e”‘e-nt&reqigeny-fiuespectrum
Cn, for all possible values of u, cent “fns’c@y damped~@urbances. ___
Thus the range of the Reynolds nugber ~ is &ivided uy~into a region
of stability O < R < R* and a region Qf instqbi~ity R > R*, which are - s
separated from one another by the stability boundsry Rx.

—

Since, in the literature published :ti~ti~ DOW a~~t exclusively
neutral oscillations - at most, excited ,oscil~qtions- @ve been investi-
gated, we shall investigate in the pres~tre~ort, following a suggestion
of Prof. D&. W. Tollmien, the entire spdctrum~of the eig~values Cn as ,
a function of CL and R; for simplific@ion, we shall einphasizethe
dependence on cdl. A general 6olution of this problem impossible in
the following two special cases: (1) in:the c~se U = c6nst. which is
fiquivalentto U = O. We deal here with the ‘!oscillatio?geof a fluid
~t rest” already treated by lord Rayleig~* Tli3solution”is yossible in
the domain of elementary and transcenden@l. f@ctions. we second
special caseconcerns the rectilinear Colette flow U = y investigated
by L. Hopf (ref. 5). The solution can b~redu~d to tab~ated Bessel
functions. .

-.—
For more-general velocity profiles ;U(y~,the eigenv@lues Cn can

be determined approximatively analytical~ in the following limiting
cases:

~.

I. In the Mniting case aR +0 f& ar’b~traryor&=r
.-

n of the
cj.genvalues Cn

.:..— s.

—. —- ..

11. In the limiting case n <m for:constant & ‘-
~.

111. In the lti=itingcase” of”+m for res&-icted ord& n.

.

h

.—

- .-=

?

. .
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A continuous transformation of the three cases into one another
for constant subscripts is possible in the above nsmed special cases
U=Oand U=y. The assignment of subscripts of the eigemalnes ~
can be made in the cases I
is, according to the rule

and II according to

‘(%+1) S m (%)

However, this rule is not always applicable to

increasing damping, that
-—
—

(1.4)

the case III when the sub-

—

—

scripts used are to remain constant for continuous variation of a and-”
R.

The boundary-value problem formulated in (1.2), (1.3) is, general~v,
not self-ad~oint; thus, the reduction to the well-known statements and
estimates of the Sturm-Liouvil.letheory is eliminated. The eigenfunc-
tions generally do not form an orthogonal system. They do form, however, ‘-
as O. Haupt (ref. 3) has shown, under certain assumptions, a system of ‘
functions that is complete with respect to each of the functions which
satisfy the boundary conditions (1.3) and
differentiable. This system of functions
orthogonal system.

2. TEE LIMITING CASES OR -0 FOR

sre four times continuously
can be transformed into an

ARBITRARY ORDER n OF ‘ ‘“—

THE EIGENVA.LUES cn> AND u ~m FOR lXMITEO all

As aheady found by Lord Rayleigh (ref. 8), the entire system of
eigenfunctions and eigenvalues in the case of the basic flow U = QJ ‘-’-
that is, for a nedium at rest, can be given as a closed ‘sy-stem.Since

—

these eigenvalues me suitable for approximative representations in - —

the case of Ewe general basic flows also, we shall derive them here -
briefly. In the case of the basic flow U = O, the stability differetif-i—&Z“z
equation (1.2) is simplified to —.—---

.—

(2.1)
.

where we shall denote the eigenvalues by Cj to distinguish them from —
the eigenvalues c of the general stability differential equation.
The equation is solved by each of the functions -——

cosh m Sinh mijl(y)= cosh Oy - cosh ay ~05h a @I~(y) =sinhmy-sinhay—
.-SW a

(2.21



4 ‘ NACA TM 1417

if we put
... .—. ...”—.-

U2 ‘2-iaI”. c”’
.-

=a (2.3)

me part o(a) = O of the boundary con~itiofi-is ident~c”afi satisfied.”
The remaining boundary conditions @’(*l) = O lead to the related branches
of the eigenvalue equation: ;- >“

atanhu =Utanhu in the case I

_ ~.

(2.4)
a coth u = u coth u irithe case II

The equations (2.4) have, for positive q, no rqot~ ~ ~tside the
imaginsry sxis of the complex m-plane. With u, also -uj is an eigen-
value associated with the same eige-c~ion.- ..Thus it is sufficient
to consider only the positive imaginary $igenvqlues u. .If we designate-AL
even eigenfunctions by even subscripts a@d odd%igenfunct~ons by odd
subscripts, the equation (2.4) may have the solutions Oo, ~2~ 04, . . ... .-
in the case I

can always be

and ~, in the case II“’3’5 ’”””. .: The eigenvalues

made to form a monotonic sequence
.—

—

o<~<~<”+<. ;.
—

The associated eigenv”alues Cn
--

are accoiding io equatiori(2.3)

,n=5.EY
id?

.

They are, therefore, arranged in the order of igc~easing d&Qing. The
nth eigenvalue may be estimated ufiard and downward by -

CL +nn2+J2< idl. cn<k2+>:+ 12:2

()22
:~-.::

()
(2.6)

From the representation (2.5), it follows that the eigenvalues C
become very large for aR ~0 as well as $or n +w. ~esme behavior
occurs, also, for more general.velocity prQtiles ~U(y) bec”ausethe main
parts of the stability differential equatibn (1.2) are then represented

—-— --

.
>.

.

_-
b

-—

.

-

.
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by the equation (2.1). We shall now express this train of thought more
accurately by subjecting the difference c - C of the e~envalues c.
to a more accurate estimate compared to the eigemalue C of equa--
tion (2.1), for more general profiles. With introduction of the differ-
ential operators

L[9]=U(9” - a%)- U“9 M[P] =CP” -U2P N[P] =g(k) - ~~~ +a.k~

(2.7)

the stability differential equation (1.2) may be written in the form

CM[q]= 1qg-* Npj”

Correspondingly, equation (2.1) reads
r

(2.8)

C@] = -+#@]- J
Utilizing the fact that the operators M -d N sre self-adjoint, we
obtain

If the

from these two equations the relationship

—

normalization which is still open for g is fixed by the rule

(2.10)

there follows, after introduction of the auxiliary quantities
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from equation (2.9) the representation ‘z- “-. -. —
—

C = Q+ q ‘.:
--

c- “(2.12)” -

In this equation, C and Q maY be regardeiias known”~y virtue of the
functions- O

have already
directly the

represented ~ eq&tions~(2.2). The eigenvalues Cn

been delimited in express+on(2-~6). For ~Q we obtain
estimate

..

J
+1

Q; =- ()U.dy+ o.: 0>>1
-1

In connection with a simultaneous est~”te of-the funct<on—

(q - ‘a)” - az(cp- ~), we obtain for q’

()
q=o~ for ~

u

If we substitute both into equation (2.12),
of equation (2.5) and expression (2.6),:the

(2.13)

>= s. .: -- —
. ..

- --,

-.—
.

-!40 (2.14)
.

we obtainf%ith consideration
~wo partial’sts,tements ●

Cn
()

-cn=~+ ofi for & GO ‘“andfor &=%&nwy order n

. .—
J2.15a),—,. ~ _

n +1 . —

-Cn=+ ()
.— .

Cn 1 U“dy+o: for n~~~ ?or fixed~aR ~ - ‘-
-1

(2.15b)

The latter estima~ indicates that the ‘elgen~~ues ,~” of the stability

differential equation for sufficiently high &der n f-kl.y tend toward
the eigenvalues Cn of the “zero.flow!!..(tiththe real—part increased @

the mean velocity of the basic flow). {Comp&e eq. (2.z-).) A mutual
coordination of the eigenvalues Cn to;the efienvalues”>n, however,

is by virtue of equation (2.15b), meani&@l~nly due t<.the fact that ““
the difference lCn - Cn+ll of the app~ox@a~ion e~gen@ues comes out

considerably ls&’er than the estimated remai~r in equ~ion (2.15b):
For, because of (2.5) and (2.6) — —-

.. . ....

—

‘
—

>.

f

.

..
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Cn - Cn+l u~co~t~t . n
z (2.16)

is valid. It should be mentioned that F. Noether (ref. 7, p. 239, for-
mula (28)) has already indicated an asymptotic representation for slightly
differently defined eigenvalues for unlimitedly increasing order,
although only intimating an armnt - which leads one to expect con--
siderable difficulties.

We mention, furthermore, an estimate for the ei.genvalues c ipdi-

—

—

cated by C. S. Morawetz (ref~ 6, p. 580)

c- %1 < A . (o@-1/2

where Cn is an approximative eigenvalue which

determined by the equation

~+1 t

—

(in our notation) is

~j-, ti(u-cn)*@=f&

and corresponds more or less to our approximate eigenvalue Cn intro-

duced in equation (2.1). In the above estimate of Morawetz, neither ti
nor n may become arbitrarily l=gej in the first case, the eigenvalues
would shift into the excluded neighborhood of c = w yl w = U; yl des-

( )(
ignates the wall); in the other case the estimate would become meaning-
less since the behavior of the quantity A for unltiitedl.yincreasing
n is not given.

3. RECTILINEAR COUEI’TEFLOW.

FOR FINITE

THE LIMITING

ORDER n

CASE ciR+~

In the special case of the basic flow at rest, U = Os the behavior
~f the eigenvalues ~ for unlimitedly ficre~ing al? is described

by the formula (2.5) in which the quantities ~ no longer depend on

aR. In deviation from this law, there results for more general velocity
profiles a behavior like ..

--
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.

(3.1) .
.....—

where the complex valued qwntities ~n no–longer de~end on all. If

these eigenvalues are adjoined to the:eigen~alues in~uation (2.15a),-
by continuous transition of a and &R ”th~order@””firinciple (1.4)
according to increasing dsmping is lo&t everiin speciql cases like the
rectilinear Couette flow. If we ther~fore ~esire that.the subscripts
of the eigenvalues ~ remain unch@ged fgr continu&s transformation ~

of the limiting cases aR +0 and @ ~TOJ~“intoone “~other,’we must
actually carry out this procedure which presupposes a~eneral solution
of the eigenvalue problem or a solution wl@ch is alpr_oxi~te only inso-
far as the individual eigenvalues still re&in dis~i~ishable from QQe

another. We succeeded in “obtaininga~solution in thi:=sense only in the
special case of the rectilinear Couetfe flow. It wi.Xl,therefore, form
the subject of the following section.

After insertion of the velocity profile
Couette flow into the stability diffe@tial-
can be reduced, by means of the substitution

+ = 9“ _a+

u = y of the rectilinear .
equation-(1.2)jthe latter ,.—

to the Bessel differential equation in”the auxiliary

$“ - [iall(y- 1
C)+U24 =0,..

In order to arrive, through the boun~y con%”itions,
we must invert equation (3.2) in the form ‘“

f

Y
‘?(Y)=

si& &(y–- ~j
-2$(7) : ~ dq

-.

(3.2)

—

(393).

.!

— .-
a~ the eigenvalues,..
.-

--- w

“(3.41 “’ ‘-

The boundery conditions q(-1) = CP’(-1)=O~then are {identicallysatis-
fied; the remaining boundary conditions @(+l_)= p’(+1) = O require
that the two equations

. .... ..-.— --—-. v

1
,+1 +1

sinh ay
$(Y)” ~ dy=o

-1 J“
-1 V(Y}coshaY dy’. O

hold.
—

.

.

.-
J— —.
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By means of the substitution

9

Y- yk = eq with e = (aR)-1/3 ia2andyk=c+— (3.6)
aR

the differential equation (3.3) may be transformed into the differential
equation

(3=7)

If

$1(~) ~d !@) (3.8)

are assumed to be two suitable fundamental solutions of this equation,
and TI_l, ~1 is assumedto designate the
equations (3.6), associated with the walls

(

ia2
ll=+-l-c-~

)
\l =

values which sre, because of

Y= -land y=+l

For further treatment of
sequence of functions ~(n)

—

there follows from equations (3.5) the eigenval.ue

.—

c
~a2

)
-—

m (3*9)

eqmtion

this equation,
by the La@ace

the introduction of a
integral

..

~n-l dz
● (3*~)
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#-.. .— —

is advisable in which the path of inte~ation~~ rurisf~orninfinity”- “- “’
to infinity in the manner drawn in fi~e 1. .Che funct~o~ ~(~)
satisfy the differential formula

.

and the recursion

by mans of which

—

d-A’J’d
—=%+1(7) ..d~

(3.12)
.-

formula
>.

i“An+3+q”~+~+n”An=0 (3.13)

all,the functions ~(~) and their in~egrals and

derivatives may be constructed

A&l)

The significance of these

— ..
recursively fr~ the’“threebasi’cf~ctio~

(3.14)

functions: ~(q) for the-stability prob- _
-.

Iem lies in the fact that the two particular ~~lutions &the differential
equation (3.7) needed in the eigenvalue e@ation (3.10~can be repre- .

sented In the form

That the ‘differentialequation (3.7) is ~at-isfiedf~llom- from the —
formulas (3.12) and (3.13). The linear independence of thetyo functions ._
follows from the fact that the Wronski d&tern&%tj whic~ is constant of
course, does not disappear at the point ‘q“= “~

...

The basic functions Al(?) and A2[7)= Al’(q) ha~e beennumeri-

cally tabulated (in somewhat different n&ati&) for a quadratic point

II
grid with the mesh width 0.1 within the &ircle-- q“ ~ 6 ‘of the complex

~-plsm by H. H. Aiken (ref. 1). The babic”fi-ctiofi ~(q) =
J
‘Al(~)dq

=
can be determined from it by a numerical integration.

Outside of this table, the behavior.of the functions ~(~) maybe

inferred frorithe asymptotic series representation “ =
,.
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which is valid f’or p-q+=’ in the singlespace

with arbitrarily small b > 0. According to H.
first coefficient of the series is

(3.16a)

The asymptotic series we obtainable directly from the Iaplace inte~al
(3.11) by means of Riemann‘s saddle-point method. ..

For the representation of the eigenvalues, the zeros v~ of the

function %(q) are necesssry. An asymptotic calculation of these zeros

for ,1Ml >>1 is not pOssible directlyby means of expression (3.16),

since the zeros would move out of the range of validity of this repre-
sentation. We avoid this difficulty by applying the second relations
obtainable from the integral (3.11)

and

conjugate-complex values)

where the polynomials pn(q) of the degree
sion formula (3.13)

(3917)

-—

4X

()A’IIF
‘T

= Pn(?) (3.18)

-n satisfy the sane recur-

i“pn+s+~n+l+npn ‘o (3.19)

with the initial elements

Po=l

Co~bination of formlas
representation valid for Iz

—. .—

‘1=0 P2=0 .
—

(3. 16) @ (3=18) then yields the asymptotic
I +m in the singlespace 1=~’<’-~I .—
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Hence, there follows, for the zeros

&

+--5J=0$ 2 z3/2 + X
; (3.20) *

.

.—

= O “which, according~ “’of ~-(?-J -

to equation (3.17), lie in pairs symmetdical& with res~ect to the
straight line arg = 5fi/6,the asymptotic representation-

The value of the lowest pair of zeros wai”calc~l.atedtobe

qN = 4.257 . e

i[::.o*2p3] : ,3 Zh) -

.
.

according to.the table of Aiken (ref. 1)~ ‘:
——.—

. .,.-
For further treatment of the eigen~alue &uation (3U10), i> $s “– “-- h

advisable to expand the functions sinh ue~ eud cosh ae~ into their
Taylor series, and then to interchange the summation wit~integati~n
which is justified by a theorem Of Bromw~ch. ~Compare re~. 2, p. 398.)
The series obtained converge, according lo thegaxxnsof tlieLaplace tr~s- _
formation, for each value of ox. If these “se%”iessre”broken off af%er
the first terms, provided with residual ~erms,and substituted into the
eigenvalue equation (3.10), the latter i~, for-this reason, and with
consideration of equation (3.17), simplified to —

43(TJ - AO(IJqj(-$) - %(-7:1)

A~(~J - =42(IJ

O(a2e2)

‘m:) - ‘H%) ‘= :-

--

for .1Ik ~ constant
—.

(3.24)

What happens now
when c tends “toward
equation (3.9), ~, -

71? T-i must

real axis. It

the other case
imaginsry axis

when ti increases;beyo”n-dall limlfk, that is,
O? Because of there@tionship following from
n. = 2/6, at least!one o?.the two quantities ‘-” “-’
-- J. —

,___
tend toward infinity for ~“&“O,?ok a’p&~lel to the ““ ..+

is sufficient to assume,this regarding ql: because in .

everything would farm a mirror ~ge with respe-ctto the
of..the.q-p~n (as essentially occurs in the Couette flow
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where with C, also, W++ is an eigenvalue). With consideration of
the asymptotic behavior (eq,.(3.16)), the eigenvalue equation (3.24)
then is simplified to.

‘o (m = = 0(e2) for e<<l
‘A2(~-1) ‘~ .

(3.25)

From this formula, we recognize that q-l for e ~0 wst tend —

toward the zeros ~ of the function ~(~) estimated inexpres-

sions (3.21). We thus obtain for the eigenvalues c, with considera-
tion of equations (3.9), the asymptotic representation —.

c! + 1 = -.%+ 0(.2)

(3.26)

with ~ from Ao(~) = O

Thus we have proved the previously given eigenvalue fo~la (3.1)
for the special case of the Couette flow.

.
In order to follow the variation of the eigenvalues c over the

entire range O ~.a.R< N, we ?nus.tgo back to the eigenvalue equa-
tion (3.10) or its approximate form in equation (3.24), with the func-
tions ~(~), Al(q), ~(~) to be assun@d as known. We have accord-

ingly calculated.the 12 lowest eigenvalues c as functions of ..cdl““for
a fixed value a = 1 and represented them in figure 2.

—.
The variability

of the eigenvalue curves with a is only slight and becomes, for
instance, for crR+m with e small of the order O(a%=’).

The eigenvalue spectrum of the rectilinear Couette flow has been
discussed already by L. Hopf (ref. ~). Hopf replaced, more or less ~

-..

the level of our eigenvalue equation (3.10), the solutions ~1, $
II

represented by him by Hankel functions of the order 1/3 - by the first
terms of their asymptotic series (3.16), whereby the eigenvalue equa-
tion was simplified to an algebraic eqution of auxilisry arguments and
circulsr and hyperbolic functions. However, since Hopf committed certain
errors in the asymptotic representations of the Hankel functions, his
results require partial corrections. Although these changes are hardly
signif~camt for small values of aR, the values of, for instance, ~

—

A,

in a formula ”correspondlngto (3.26) undergo a considerable change. ~e_
topological connection of the eigenvalue curves c = c(a,aR) also
appears dtifere.nt_to us from what it appesred to Hopf. However, the”

.
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qualitative picture of the eigenfuneti?ns, the physical_conclusions
Y!

drawn from it, and the main result - that all oscillations are dsmped - ‘–
remain the sane.

4. THE LIMITING

.
.—

CASE aR ~rn FOR FIl@?E ORDER ~g FOR

SYMKETRICALBASIC FLOWS

For a basic flow with symmetrical velocity profile—

u(y) = U(-y) (4.1)

the stability differential equation (l\2)=always has a%ndamental
system of four solutions @l, @2, @5~, CP4 so that ._

.. -—

52(Y)

and

5,(Y)
L

@4(Y) are even fun~tio~ of “>

—

‘“ _]

.(4.2) -

@3(Y) we od~ f~ctions of ~
<,,. .——

If a linear combination
conditions of–equations
9(+1) =0, Cp’(+1)=0,

of these solutions i~to satisf~ the boundary
(1.3).in the se!quenc~ ~(-1) ==0, 9’(-1) = O,
the.following determinant, simplified with

consideration of the symmetries (4.2)},must disappear:_ .-

Since this deterninsmt may be written .$Mth=product of.the two-column
deterfiinants

D-—
4

_—

--



.
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one obtains, by
the eigenvalue

17

equating one of the two factors to zero, one branch of
equation each time. For this reason the eigenfunctions

can be either only even or only odd, with the respective eigenvalues 6
generally being different.

In order to srrive from these equations at asymptotic eigenvalue
.—

formulas,~we shall determine the four fundamental solutions (4.2)
?1 . . ● ‘?k in such a msmner that they are available for appropriate

asymptotic expansions. We find that the fundamental solutions described
by W. Tollmien (ref. 1.2),“Asymptotic Integration of the Stability Differ-
ential Equation”, the asymptotic representations of which are provided
with residual-term estimates, me suited to the problem.

In order to establish the connection of these fundamental solutions
with ours, it is indispensable to discuss first the concept of “friction-
less approximation.” The quest for solutions of the complete stability
differential equation (1.2) which for aR - m, together with their
derivatives with respect to y, tend towsrd a limiting function

limq(yjm) =x(y) (4.4)
axl+w

leads to the so-called “frictionless differential equation”

.-

. .

(u - C)(x” - a%) - U“x = o (4.5)
.

which must necessarily be satisfied by such limiting functions. If we
want to use the solutions of this frictionless differential equation
for the approximation of the solutions of the complete differential “
equation for UR ~rn, we must not disregard the r“ai@eof validity of the
boundary-value statements in equation (4.4) in the complex y-plane.
According to W. Wasow (ref. 13), the following theorem is valid with
respect to this: —

“Of the four fundamental solutions (4.2), one even and one odd
solution can be determined in each case so
frictionless solutions %l(Y) and %(Y)

that with two appropriate
the approximations

()91(Y) =21(Y) +O* X1(Y) = odd f~ction of Y

1

--

(4.6)

()
T2(Y) ‘ ZJY) +o& %2(Y) = even function of y
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in each fixed interior of a double region (1.+ 11) Or (TI + III) or
4

(III + I) are valid and become invalidj in each case, ~ the comple-
mentary third region III or I or 11. The same is truejfor the deriva-
tives with respect to y.” (Compare fig. 3/)

.

The boundaries between the regions .I,.1~,.and III satisfy the
equation . . . - -- —

if yk denotes the “critical point” d~fined.by

u (Q = c Re yk <-0
—

-.

(4.7)

For more details regarding the regions ~1,11~-and III s~e Wasow (ref. 13).

The frictionless clifferential equation L4.5) has at the critical
point,

()
u Y~ = c, a singular point wit~hregard to determinateness. Two. .,..

fundamental solutions take the form ! == - = .

X1(Y) = (Y - Yk) 0 ~l(Y - Yk)
.—

——— —

—

X2(y) = IJ(y- ‘i
yk) + ~ ~l(y - yk) . (y - yk)~~y - Yk) (4”9)

if P
-1.

and P de”notepower series wi~h the~beginni~-~”
–2 .,—

l?l(z)=l+Z. ‘{~ +o (z?) 32(Z)

k
= 1 + o(z2) (4.9a)

.

(Compare W. Tollmien, ref. 12, p. 35.) The ccmmon radius of convergence.
of these power series is limited either by the radius of?convergence of _ .-’-
a corresponding series for U - c or by the fiext-tidjace~t”zero of U -.c
as a singulsr point of the clifferential’equation.

. --

.-
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For the further development it is advisable to introduce a sequence
of functions Bn(q) by the Laplace integral

—

z

which is comparable to equation (3.11). In it, & = 0.5772 . . . denotes
the Euler constant. The path of integration Q runs, in the msmner
indicated in figure 4, in the complex z-plane cut open along (0,-icu)
from infinity to infinity.

The functions ~(q) satisfy the differential formula

(4.11)

and the recursion formula — —.

i.~+3+q. ~+l+n. ~=Pn
.

(4.12)
.. ..— __

in which Pn(q) are the polynomials defined in equation (3.19).

By means of these two formulas all the functions Bn(~) smd their

derivatives and integrals csn be constructed recursively from the three
basic functions

.

.

Bo(II)

By meems of the representation

Bl( II) B2(II)

(* = conjugate-complex value), the basic functions ‘1 and B2

reduced to the functions ~. (Compare W. Toldmien, ref. 10, p.

(4..13)

The sign~icance of the functions %(q) for our stability

value problem lies in the fact that the function B1(T), because

equations (4.11.)and (4.12), satisfies the differential equatio~

(4. 13a)

can be

27.)

eigen-

Of
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d%l d2Bl .’
i— +n —=1.
dq4 d~2

“ NACA ~ lk17

.

(4.14) “

-.

which, with the designation “differential eq~atfoh”for~~he friction
correction,” has been introduced as an ~essentialconstituent into the “

..—

asymptotic integration of the stability differential eqtition by
W. Tollmien (refs. 10 and 12).

L

After these preparations, we turn ~o the four fund&nental solutions
~1> Pi-I-J 9111) ~~ of the complete ~tabil~ty differential gqUatlon .. .

..— ... ..-’.4 ..
constructed by Tollmien, regsrding its ~bilit~ to be e@~ded asymp-
totically. According to W. Tollmien (re?. 1~,.p. 77) these four solu-
tions may be determined, with use of the substitution .

—.

Y - Y~ = eq ()with e = aINJ’
k

‘1/3 m! yk ‘from U (yJ = c
.

(4.16)
.-

in such a manner that they have in a fixed interior of the q-plane (corn- ,- .
plex for reasons of analytic continuati~n) as well as inievery fixed
interior of the region II of the frictionless.,approximation(compsre
eq. (4.6a)) the following asymptotic representations:

b

~~(Y) = X1(Y) + 0(63) (4.17a)

‘T1l(Y)=22(+ +

or in every fixed

Furthermore,

interior of II

—

}

(4.17b)—.

911(Y) = X2(Y) + 0(+ J.-,. -
~III(y) = ‘-1(v) + 0(~) in- 1+ COnStaIlt (4.17C)

is valid.
,3

Finally, there applies, according t~,W.”Wasow.(ref, 13),
quotient-asymptoticallyin every fixed interior of II (coiipareeqs. (4.6))

—

.

●

,-.
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.

.

(lt.17d)

Corresponding formulas are valid for the derivatives.

For further treatment of the eigenvalue eqmtion (4.3), we must
express the fundamental solutions @l . . . ?4 used in it by the above

fundamental solutions Cpl. . . gm. If for the latter, the representa-

tions (4.17) are used immediately, and with the residual terms in each —.

circle IqI 5 constant for e ~0 being valid, the result reads

1
(4.21-a)

from the frictionless solutions X1 and ~. (Compsre eqs. (4.9))
Furthermore,

/ constant\

is valid.

If we
tion (4.3)

O=D=

(’.2lb)

Corresponding formulas are valid for the derivatives.
.——

now write the two eigenvalue eqy.ationsobtained in equa-
as a product of three factors, for instance, “

.-
—
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(O = erbitrary constant), the zeros of~the t& first-factors do not -
make a contribution to the eigenvalue ,confi&ation since they are
compensated ~ corresponding poles of the third factor - unless the

.

derivative q$(-1) should disappear simultaneously. It is therefore—.> —.
sufficient to find only the zeros of t~e third factor.

.-
After insertion- ‘-

of the approximations (4.21) we thus obtain
.- .— —--

~[~ E+l+Sl,2+B&)3- -E.—
1

dq
111 .k—— = -.:+ O(e%rl ~) (v = .ll)

%11 ‘n
~~

l+e.~
[( 1qine+l+S1,2)+ B-~(~)

k :-

(4.22)
.

(with q = ~-1 = -1 - yk)~c ‘d ‘l) ‘2 ““ac~ordingto~quations (~~2h=) “’”-–

from the frictionless solutions. The function ~(~) stemming from a
next-higher approximation in equation (4.21b) reads

and may be reduced, by means of the for@las ~3.12) and ~3.13), to the
three tabulated basic functions ~, A~, A20

How do the eigenvalues c behave ~if”in~he ’ej.genv~~l~eequa- ‘- ~.
tion (4.22) we let aR +CO, that is e ~01’ Nidently q_, then tends

toward the Zeros
.

By T&lor-~&ies expandedqN of the function Ao(~).—”””
—-- ------- .-..-’

about these zeros, there follows more ~actl.y”

.
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The eigenvalues then behave asymptotically

21

like

with ~ from AO(~) =0. As a supplement to eqpations (3.21) we shall

give here a few zeros ~ and values ~/A1:

?N

-4.122+ i . ~. 065 -1.686 - i . 1.222
-2.983 + i . 3.037 0.851

For 1~1>>1
+1.902 + i .

-6.8 +i . 2.5 -2.2 - i ● 1.5 there applies

-593 + i . 4.3 +2.4 + i . 1.14
r

~(%)= %
‘A, (q~) ~

-\

The remarkable fact about
i6 that it is transformed into

the asymptotic eigenvalue
the corresponding fornmla

(4.24)

formula (4.23)
(3.26) titer

substitution of the velocity profile U = y of the Couette flow, although
the two formulas were derived under completely dfiferent assungtions. -

The asymptotic eigenval:e formula (4.23) is already so greatly
reduced that it no longer permits a distinction of the ei.genvalues c
which are associated with even or odd eigen functions. For this, we
must go back to the more exact formula (4.22) iu which the character-
istics ‘*even”or “odd” of the eigetiunctions are taken into consider-
ation by mesms of the constants

‘1 and S2, to be determined “without
friction.”

We have used the eigenvalue equation in the form (4.22) also for
the numerical calculation of the eigenvalues c & the ~~les treated,

We selected as exsmples the two-dimensional Poiseuille flow and a flow
with sm inflection-pointprofile. We represented the variation of the
four lowest eigenvalues as functions of R for a fixed value of a
in figures 5 and 6. The numerical calculation itse~ is - after reduc-
tion of the nonalgebraic eltients contained in the eigenvalue equation
to the three tabulated basic functions ~~ ~> A2 -d to the fric-

tionless solutions - a problem tiVOIViW numerical methods, the details
of which cannot be discussed here. We shall mention only the following
approximate representation of the frictionless constsmt S2
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--—.

% ().u~z
S2 =.A . U-2

q“
+ O(1) for u ~< 1 w=ith A = ““~~

.. .. .
To (u - c)2dy
d -1

(4.25)
----

(Compare W. Tollmien, ref.
---

11, p. 100), whi~h may be applied advanta- .
geously for small.values of a.

The subscripts for the eigenvalu~s ““c-”=obtained.-frouequation (4.22),
in the sense of a continuous connection wit~~the limiting case aR ~0,
remain an open problem here. In the ~ange .@_validity of equation (4.22)
alone, a generally valid choice of subscripts according to the rule

~ (@ s Im Cn , that is, accordingto increasing d~igg, cannot in_ ,.
()

principle be carried out, either. Th@ zeto~~in eiu-ati~n(4.23) c~ be
ordered according to the increasing
curves may penetrate one another if

5. THE FRICTIONLESS EIGENVAIXJES

Determination of the

Let the approximation (4.6) by

inipginu-ypart, but the Im(cn)
e is changed. -

—..- -.
-1

WIbIfi !&E LIMI~Im CASE aR +W
— .

.
Excited fiigenvalues’

me&s. of~the fric.tionlesssolutions
be suited either to the double region ~ i-II~c~are fJ.g.3) or to the
double region 11 +–111 whereby the logbit-~c te~ is_always uniquely
determined in the frictionless solutiofis. A@l-Y@ the approximations
(4.17), we then obtain, by way of the bigenyalue equations (4.3), eigen-
values c which, for aR ~M, tend t&rd the so-called “frictionless

C(0)(a) which are defi~ed ~y%he bound~y “coridition ‘eigen values”
:1(-1) = O or %(-l) = O of the odd~or ev~tifrictionless solutions

xl> ?2. The foll&ing general statements may be made regarding these—.
frictionless eigenvalues, limitd by t~e I@& of valid~ty of the

,.

boundary-value expressions (4.6), according,tQW. TolJniien(ref. 21),
partly on the basis of the “Rayleigh-To~lm.ien-theorems:“

— -— ..-:.
“For velo’dityprofiles without turnfng”p~ints; no ~“cited friction-

less eigenvalues ue possible. The approximation.(~.6~,associated
with the damped frictionl.esseigenval~e~~ .mu~t always take place in the
interior of the double region I + II.” .

“: .-

“For inflection-pointprofiles, there always exist~xcited friction-
.

less eigenvalues associated with an eved efgenfunction.i’ .

—
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.

Beyond these general statements, frictionless eigenvalues associ-
ated with ah odd eigenfunction were not found in any of the examples;

.
neither did we find eigenvalues such that the associated approxima-
tion (4.6) would have teken place h the interior of’the double region
II + III. As eales, we chose the two-dimensional Poiseuille flow as
representative of a profile without an inflection point~ and the inflection-

[ ‘l)+@ -E)xc05~Y. The frictiCmless :-=point profile U = ~2

eigenvalues c, found only associated with an even eigenfunctionj are
represented in figures 7 and 8. The rang: of<existence of these eigen-
values is always given by an interval O . a . constant. For the fric-
tionless eigenvalue c, Tollmien (ref. 11, p. 100) has set up the
following a~proximate formulas: —

()
Cru’(-l)

a=acr =
~’(u-cr),m ci=ci~r) ’c~--withU(yK)=cr

(5*1)

We now seek the connection between the frictionless eigenvalues
those discussed up till now. The closed solution, in the case of
Couette flow, cannot give an answer to this problem because the

d and
the
frictionless eigenvalues in question do not exist there at all. How-
ever, it is possible to insert the frictionless eige”nvaluesinto the
equation (4.22) and thus to interpret them as a limiting case within
the eigenvalues (eq. (4.23)).

Let us, therefore, perform on the eigenvalue_equation (4.22) the
limiting process aR ~m, that is, e ~0 for constant (-1 - %) = ‘~-l;
the justification of this procedure is based on the equation preceding
(~.22). By means of the asymptotic formulas (3.16) there then follows
for all+w .-

1+(-1- %
‘k) ~

[

ln(-1 - yk)+ ‘1,2
}

=0

These are, however, precisely the first Taylor terms of the frictionless
eigenvalue.equation Xl(-l) = O or %(-l) = O which would be obtained,

according to the significance (equation (4.21a))-of “Sl, s2,-in..t-he~5e

of Taylor expansion in the sense of the series (4.9). ‘“ “-”‘--””:”” -
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On the basis of this finding, the det-ermha.tion~ofthe excited
eigenvalues (Imc > O) can be simplified. “Since,ac~ding to the results
of the second section, excited eigenvalues can appe= only within the
first eigenvalues of finite number &d for”sufficien~~ large values-
of R, it suffices to examine equation (4.G22)with r~ect to excited
eigenvalues. For-this, the followin& alt~n&tive”is valid: Excited
eigenvalues can be (approximately) determined either~by the frict~on~
less boundary-value problem in co?ibi~atio+?withsuff@ientl.y large values”
of R, or they lie in a neighborhood,of c__=U(-1) &d can be determined
by means of one of the equations (4.$2) or(k.25) as associated with
finite values of

—.
7-1” -. . ...., ;—

.-.
--
—
—.

.—

As follows from this for suffic~ent~-”iargeval~es of R, but as- ‘-
was confirmed in the examples for the smal}-ervalues -of R alsoj the.
greatest excitation for inflection-point”p~ofilesisL~alwayscombined with”
the frictionless eigenvalue or its tiontintiatioritow~d smaller R “-
values. Hence, there follows the well-known fact that, in the case of
turning-point profiles, the stability behavior may be concluded even
from the frictionless differential equation-alone. Let us compare to
this the calculation of the frictio~ess eigenvalues of G. Rosenbrook
(ref. 9) for an inflection-pointprofile w~Jchhe .haQ.meafiured,ina ~.ver-
gent channel. _

6. FORMOF THE EIGENFUNCTION. THF INNER ~I&ION LA~.

THE VARIATION OF A DIS$TURB~CE WIiH TIME.
—

In order to Judge the vsriation with time of a disturbance, we shall , -_
decompose the latter into partial wa~es of”%he type”fi equation (1.1).
It is then necessary to know the variation of the amp:itude 9(Y) over
the channel width. We consider here dnl.yThe case of..verylarge values
of m,

For the Couette flow, there followsz ~y equation~(3.4), in the
--

notation of equations (3.6), (3.9), and (3;15) for e-<< 1, that is,
cdl>> 1, as approximate expression for the eigenfunctlon

with

(-)21fi

Q(Y) = F(q) - F rje5 (6.1)

(6.2)

.

.--. ..
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.

“.

The boundary conditions T(a) = O are identically satisfied the
remaining boundary conditions are Identical with the eigenvalue equa-
tion (3.24). As follows even from the differential equation alone, “’ ———

V(-Y) is an eigenfunction associated with the eigenvalue -c*. We
calculated accordingly for a = 1 and R = ld the eigenfunction ‘--- -
associated with the eigenvalue c = -0.7 - iO.3 and represented it in
figure.9.

It is striking in ttis figure that the essential changes of the
eigenfunction occur in a layer -lzysyo which couldbe defined

perhaps by the angle space srg ~~ /n 6 of the strong increase of.
A-l(?)= In the variable y this “inner friction layer” is, according

to eqmtions (3.6) and (3.26), approximately —

This representation shows that the width of the layer increases with
growing order n of the eigenfunctions; the magnitude of””dsinpi~-”-‘-” –
increasing simultaneously. The velocity of the associated disturbance
wave is approximately equal to the velocity of the basic flow in the
center of the layer. Furthermorej the thickness of the layer tends with
G toward zero. The physical interpretation of this situation signifies
according to Hopf (ref. 5, p. 57) “that any arbitrary disturbance for
large values of R is damped in such a manner that, finally, disturbances
seem to emanate only from the walls, without mutual interference - a
behavior which reminds one of frictionless fluids.”

For more general basic flows, Tollmien (ref. 12) set up an approxi-
mate expression for the eigenfunctionj in it, one can recognize again,
in the case of damping, am “inner friction layer” which would have to
be defined by the angle sgace K/6 ~ arg q S 5K/6 of the great changes
in increase of B-l(q) or A-l(v). In the variable y, this layer is,

according to eqpations (4.16),
--—

c +tici<< c- J-%i
-1+ r

U’(-1) =Y=-1+ e+o
:’(-1) (6.9)

whence we obtain for the higher eigenmaluesy according to equation (4.23),
again the formula (6.3) for the Couette flow. If, however, frictionless
damped eigenvalues c in the sense of section 5 exist, the inner fric-
tion layer, expression (6.9), retains also for the limiting process
e +0 a finite thickness and a finite distance from the wall. We calcu- –
lated, for this latter case, the even eigenfunction in the example of
the Poiseuille flow, for a = 1 tid R = 7.7 X 105, and represented it

..- ---
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in figure 10. The eigenvalue c
from the frictionlefiseigenvalue

Comparing the inner friction

.
—

NACA TM 1417

—
r

.. ..

= o.178_n i x 0.049 hsrdly deviates
associated with a = 1. .-. .— .-
layer ~.th the bo&dary layer, we may

say that the bound~ layer represents that flow reg~on in which the
behavior of the laminar basic flow ip decisively influenced by the inner

.-

friction, whereas the inner friction.layer..indicatesthe region where
the disturbance is decisively subjec~ to the influen~e of the friction,
since outside this layer the disturbance cam be detez%ined without
friction.

—.
—.-=....-

T&anslated by N&y L. Mahler
—

-._.-. ,.4 —

National Advisory Committee ~ ‘. ~. .“ ~.’ ~ : ~:
for Aeronautics

-.

—

.-.
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Figure l.- Path of integration ~ in the complex z-plane.
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Figure 2.- Rectilinear Couette flow. The twelve lowest
values c as functionsof R for a = 1.
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Figur@ 3.- The regions
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Fiuure 5.- Two-dimensional Poiseuille flow. The four lowest eiqen-
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values c as functions of R for u = 0.87.
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Two-dimensional Poiseuille flow. The frictionless eigen-
associated with an even eigenfunction, as a function
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Figure 8.- Inflection-point profile. u=(@-l) +(2-@ )cosy 31?
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The frictionless eigenvake c associated with an even eigen-
function, as a function of a. —



34 .-

Figure 9.- Rectiline
Ya=l andR=10

c = -0.70- i x 0.30.
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C!ouette flow. Eigenfunction q ‘(y)
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Eiqenfunction Q‘(Y)
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